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A general method for computing the hydrodynamic interactions among an infinite 
suspension of particles immersed between two infinite plane boundaries, under the 
condition of vanishing particle Reynolds number, is presented. The method ac- 
counts for both near-field particle-particle and particle-boundary lubrication effects 
as well as dominant many-body effects, which include reflections with both particles 
and boundaries. Through relative motion of the boundaries, a bulk shear flow can be 
generated, and the resulting particle motions, as well as the forces exerted by the 
boundaries on the fluid, computed. Knowledge of the boundary forces allows for the 
calculation of the suspension viscosity. The simulation method is applied to several 
example problems; in one, the resuspension of a sediment layer of particles is 
illustrated. The general method can also be extended to  dynamically simulate 
suspensions immersed in a pressure driven flow between two walls or through a 
tube. 

1. Introduction 
Dynamic simulation is a powerful tool in the study of suspensions of particles 

interacting hydrodynamically in the Stokes’ flow regime. Through simulation, 
macroscopic suspension properties, such as effective viscosity, sedimentation rate or 
self-diffusion coefficient are determined through appropriate temporal and spatial 
averages of microstructural information, elucidating the relationship between 
behaviour on the two lengthscales. In  cases where a statistically homogeneous 
microstructure exists (e.g. an unbounded suspension with no large-scale variations), 
a portion of the suspension far removed from any physical boundaries can be 
considered, and the direct effect of the boundaries on the system removed. In  
statistically homogeneous systems where boundary motion is necessary to drive a 
flow, for example in the case of particles immersed in an unbounded shear flow, the 
flow field is simply mathematically imposed, with no specification of its origin. 

Direct boundary effects are, however, often important in Stokes’ flow problems. 
Due to the slow decay of the disturbances produced by the particles, and to the great 
extent of the boundaries, boundary interactions can have a quantitative effect on the 
behaviour of isolated particles or dilute suspensions. In  more concentrated systems, 
however, the presence of boundaries can have an even more significant effect, in some 
cases qualitatively altering the suspension behaviour. For example, because of the 
tendency of sheared suspensions to form clusters, whose characteristic size grows 
with increasing volume fraction of solids, a t  sufficiently high volume fractions 
percolating clusters that span the gap between moving plates may form, resulting in 
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a flow which is boundary dominated and therefore not statistically homogeneous. In  
such an instance the actual boundary must be treated directly, i.e. included in the 
dynamic simulation method. 

The purpose of this paper is to present a simulation method capable of describing 
the motions of particles immersed in a fluid bounded by plane walls under conditions 
of vanishing particle Reynolds number. The method is general and can be applied to 
a variety of bounded suspension problems, though our emphasis will be on the 
problem of a suspension of force- and torque-free spheres subjected to shear. The 
shear derives from the relative motion of the two boundaries, which are assumed to 
be planes infinite in extent. 

In  an earlier paper (Durlofsky, Brady & Bossis 1987), a general method for the 
dynamic simulation of finite systems of hydrodynamically interacting particles was 
presented. This method employs a moment expansion of the integral representation 
for the Stokes’ flow velocity field, in conjunction with Faxdn laws, to yield a far-field 
approximation to  the many-body mobility matrix. (Recall that the mobility matrix 
relates the particle velocities to the forces and torques they exert on the fluid.) 
Inversion of this mobility matrix results in a far-field approximation to the resistance 
matrix, which contains the dominant many-body effects. Near-field lubrication 
effects are introduced into the resistance matrix in a pairwise manner via the 
exact two-body results. The method has been extended to infinite, statistically 
homogeneous systems by Brady, Phillips, Lester & Bossis (1988) through appli- 
cation of the method of O’Brien (1979) and the Ewald summation technique. 

Both the many-body and lubrication effects included in the resistance matrix 
result in important macroscopic behaviour in unbounded systems. The many-body 
interactions reproduce the ‘effective medium ’ aspects of suspensions, such as the 
screening characteristic of porous media (Durlofsky & Brady 1987), while the 
lubrication interactions, in addition to preventing particle overlap during the course 
of a dynamic simulation, are essential to the formation of large clusters, which result 
in large effective viscosities (Bossis & Brady 1984; Brady & Bossis 1985). 

The method developed in this paper for bounded systems of hydrodynamically 
interacting particles contains elements of the methods of both Durlofsky et al. and 
Brady et al. As in both these methods, the starting point here is the general integral 
form of the Stokes’ flow velocity field, applied to both the suspension particles and 
the bounding plane walls. The walls are divided into two regions: a near region, 
which is discretized into a finite number of wall patches that interact with one 
another, as well as with all the suspended particles, in the mobility matrix, and a 
far region, whose average integrated effect on the motion of the particles and wall 
patches is calculated analytically. The effects of the far region are somewhat 
analogous to the ‘back-flow ’ integrals discussed by Brady et al. 

Near-field two-sphere interactions are included as in Durlofsky et al. Near-field 
sphere-wall interactions are introduced through use of exact sphere-wall solutions. 
The resulting resistance matrix, therefore, contains both many-body effects, with 
reflections both with particles and with the wall patches, and near-field singular 
lubrication effects. Particle velocities are determined by solving a matrix equation 
and trajectories tracked by integrating these velocities in time. 

Many previous investigators have considered the problem of particle motion near 
one or between two plane walls in Stokes’ flow. The early far-field asymptotic 
solutions for one sphere near a single plane wall or between two plane walls computed 
by Faxen and others are discussed by Happel & Brenner (1973). Exact solutions now 
exist for the general motion of a single sphere near a single plane wall with the fluid 
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at infinity quiescent (Brenner 1961 ; Maude 1961 ; Goldman, Cox & Brenner 1967a; 
Dean & O’Neill 1963; O’Neill 1964) as do near-field asymptotic results (Cox & 
Brenner 1967; Goldman, Cox & Brenner 1 9 6 7 ~ ;  O’Neill & Stewartson 1967). The 
more general problem involving sphere motion near a plane wall subject to an 
imposed shear flow has also been solved (Goldman, Cox & Brenner 19673; O’Neill 
1968). 

NO exact analytic solutions exist for the motion of two spheres near a single plane 
wall or for one sphere between two plane walls. The most complete far-field solutions 
to date for the two-plane problem are those of Ho & Leal (1974) who considered the 
inertial migration of spheres in unidirectional flows. An extensive numerical study of 
the two-plane problem was performed by Ganatos, Pfeffer & Weinbaum (19804 and 
Ganatos, Weinbaum & Pfeffer (1980b, 1982). Using a boundary collocation method, 
these investigators computed translational and rotational velocities for force- and 
torque-free spheres immersed in either Couette or Poiseuille flow, as well as forces 
exerted by spheres translating parallel or perpendicular to the walls. These solutions 
are extremely accurate and will serve as a check on the accuracy of our method. The 
boundary collocation method employed, however, is computationally intensive and 
would result in prohibitive computation times if applied to the complex many- 
particle systems we wish to  consider. For further discussion of this point see 
Durlofsky et al. 1987. 

In  $2 we develop the general simulation method for either a finite or an infinite 
system of identical spheres bounded between two plane walls. Beginning with the 
integral formulation for Stokes’ flow, we form a far-field approximation to the grand 
mobility matrix. The effect of the planes in the far-region, i.e. the non-discretized 
portion, is discussed in detail for the case of shear flow. Next, the adjustments made 
to  the invert of the mobility matrix, which result in a resistance matrix containing 
both many-body and near-field lubrication effects, are considered. Then, i t  will be 
seen that by prescribing the walls to translate uniformly, both sphere velocities and 
the forces exerted by the walls on the fluid can be computed. Knowledge of the wall 
forces allows for calculation of both the effective viscosity and any normal stress 
differences that may be present. I n  53 we compere our results for one sphere between 
two plane walls with the results of Ganatos et al. (1980a, 1980b, 1982). These 
comparisons illustrate the accuracy of the general method. Next, a model problem 
involving the motion of six nearly touching spheres aligned along the compressional 
shear flow axis is discussed. This example illustrates the ability of the method to 
handle sensitive configurations and demonstrates that lubrication forces are modelled 
correctly. 

Two examples that more clearly demonstrate the capabilities of the general 
method are presented in $4. These examples involve suspensions confined within a 
monolayer oriented between the two planes, i.e. the sphere centres all lie in a plane 
perpendicular to the physical boundaries. Such monolayer simulations result in 
considerable computational savings while generally retaining the essential physics. 
The first example is a simulation displaying the resuspension of a system of spheres 
initially located near the bottom plane. This phenomenon, called viscous resus- 
pension, has been observed experimentally by Gadala-Maria ( 1979) and Leighton 
& Acrivos (1986). Next, we present simulation results for a moderately dilute 
suspension of force- and torque-free spheres subject to shear. These results display 
the types of long-time behaviour and time-average quantities observable via 
dynamic simulation, e.g. viscosity, particle distribution functions and particle 
average velocities. Finally, we conclude by providing some results from a more 
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complete study of the behaviour of concentrated suspensions under shear, which will 
be the subject of a subsequent publication. We also discuss other types of problems 
that can be studied within the same general framework. 

2. Simulation method 
In this section we shall develop a method to simulate the dynamics of either a finite 

or an infinite number of rigid particles confined between two plane walls. Particle 
motion results from relative motion of the walls, which generates a flow, as well as, in 
the case of a finite number of particles, through imposed particle forces and torques. 
The particles are assumed to be small enough such that the particle Reynolds 
number, Uulv, where U is a characteristic particle velocity, u a characteristic particle 
size and v the kinematic viscosity of the fluid, is much less than unity. 

In unbounded Stokes' flow problems, owing to  the linearity of the governing 
equations, the velocities of all the particles can be related to the forces and torques 
exerted on the fluid by each of the particles via the mobility matrix M :  

U-U" = M* F, (2.1) 

where U is a generalized velocity vector, urn iu the velocity field in the absence of the 
particles and F is a generalized force vector. The inverse problem involves the 
resistance matrix R : 

with M and R related through an inversion 

F = R .  ( U-u"), (2 .2 )  

Both M and R are purely geometric entities, depending only on the instantaneous 
particle configuration and not on the velocities or forces imposed on the particles. As 
we shall see, relations very similar to (2.1) and (2.2) will be applicable to bounded 
Stokes' flow problems. The integrated effect of the walls outside the discretized 
region acts much like an imposed flow; designating this effect B, (2.1) is now of the 
form 

U =  M . F + B .  (2.4) 

Before proceeding with the formulation of our method, let us briefly consider two 
alternative approaches. As discussed in 0 1,  the method formulated here for 
determining M and R for bounded suspensions proceeds from the integral 
representation for the Stokes' flow velocity field, which is in terms of the free-space 
Green function or fundamental solution, known also as the Stokeslet. This approach 
requires that a portion of the bounding planes be discretized in order that the 
particles interact both directly and indirectly with the boundaries. Two alternative 
approaches are also possible however. I n  one, the need to discretize a portion of the 
bounding plane walls is eliminated, while in the other only a portion of one plane 
need be discretized. The first approach, which requires no wall discretization, begins 
with the fundamental solution for Stokes' flow between two parallel plane walls, as 
given by Liron & Mochon (1976). By performing a moment expansion of their 
expression, sphere interactions can be formed which explicitly include the presence 
of the walls. Their expression is, however, in terms of an infinite series, which is 
computationally expensive to evaluate. And further, exact two-sphere solutions, 
which we require to build lubrication into the resistance matrix, are not yet available 
for two spheres between two infinite plane boundaries. The second alternative 
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approach begins with the fundamental solution for a sphere near a single plane wall 
(Blake 1971), which, unlike the fundamental solution for a point force between two 
walls, is inexpensive to evaluate. In this case, however, only the second boundary 
need be discretized. Unfortunately, as was the case with the first alternative method, 
the exact solutions for two spheres near a single plane boundary are not yet 
available. Though these solutions could be approximated, we chose to approach the 
problem through the integral representation for the velocity field in terms of the free- 
space Green function, where exact two-sphere solutions are known. Our method, 
therefore, requires a portion of both walls to be discretized. Through this approach 
generality is retained -the method can easily handle, for example, particle motion 
near finite plane boundaries or through conduits, while the approaches described 
above cannot. Possible computational savings that might be realized by the two 
alternative approaches are discussed below. 

In all that follows, the plane boundaries will be assumed to lie in the (x,z)-planes 
of a rectangular coordinate system, with the spacing between them designated H .  To 
simulate a suspension of infinite extent, periodic boundary conditions will be applied 
in the x- and z-directions. The volume fraction of spheres, @, is given by 

where a is the sphere radius, N is the number of spheres in the periodic cell and L, 
and L, are the lengths of the periodic cell in the x- and z-directions. 

2.1. Grand mobility matrix 

The formation of the grand mobility matrix will now be considered. The equation set 
is of a form similar to that for finite systems of spheres, with additional terms to 
account for the walls. Interactions between spheres in the mobility matrix are 
precisely as in Durlofsky et al. 1987. Specifically, the integral representation for the 
Stokes' flow velocity field is expanded in the moments of the force distribution about 
the sphere centre in conjunction with Fax& laws for the particle velocities. Moments 
are retained up to the desired order of accuracy. In the present problem, the force 
(zeroth moment), torque (antisymmetric part of the first moment) and stresslet 
(symmetric part of the first moment) are retained, yielding sphere-sphere mobility 
interactions accurate to O ( F ~ ) ,  where r is a characteristic interparticle spacing. 

Introducing the boundary interactions into the formulation, the equation set for 
a periddically replicated system of N spheres and P wall patches is: 

where U is a vector of dimension 6N containing the translational and rotational 
velocities of the spheres, E (of dimension 5N)  is  the bulk rate of strain (which is zero 
for bounded systems), V (of dimension 3Y) contains the velocities of the wall patches, 
P (of dimension 6N) contains the forces and torques exerted by the spheres on the 
fluid, S (of dimension 5N) contains the stresslcts exerted by the spheres on the fluid, 
T (of dimension 3P) contains the forces exerted by the wall patches on the fluid and 
B,, BE and Bv, to be considered in detail below, contain the integrated effect of t,he 
wall outside the discretized region, as well as a portion of the effect of the wall 
patches. Note that the force density on the surface of a wall patch is approximated 
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directly and not, as for the spheres, expanded in moments; thus there are no torque 
or stresslet unknowns associated with the wall patches. The submatrices M,, M,, 
MEF and MEs comprise the grand mobility matrix &for a finite system of spheres 
in an unbounded fluid. The grand mobility matrix in the problem a t  hand, of 
dimension 11N+ 3P, containing all nine submatrices, will be designated Aw. 

To derive expressions for the components of Aw, we begin with the integral 
representation for the Stokes' flow solution (Ladyzhenskaya 1963) : 

with 

&(X)--y(X) KiikUjnkd8 (X€#) ,  (2.7 b) 

( 2 . 7 ~ )  

(2 .7d )  

where x is a field point in the fluid-particle-boundary continuum and y a point on 
a particle or boundary surface, r = x - y ,  r = Irl, fj is the force density exerted by the 
fluid on the surface, nk is the normal pointing from the surface into the fluid, ui(x)  
is the velocity a t  the point x and uT(x)  is the imposed flow a t  infinity. Note that 
( 2 . 7 ~ )  applies for a point in the fluid and (2 .7b )  applies for a point on a surface. The 
second integral on the right-hand side of ( 2 . 7 a ) ,  upon application of the divergence 
theorem, vanishes for rigid particles that  bound a volume, resulting in the following 
exwression 

(2.7e) 

Equation (2.7e) is valid for all points x, both in the fluid and on the surfaces that 
bound a volume (i.e. for rigid particles that  bound a volume, both ( 2 . 7 ~ )  and (2.7 b )  
reduce to ( 2 . 7 e ) ) .  Thus, (2 .7e )  is the expression applicable to interacting spheres. 
Indeed, this equation is the starting point for systems of interacting spheres and 
yields the components of Mu,, MUs, MEF and MEs. These matrices, formulated in 
detail in Durlofsky et a l . ,  will not be considered further here. 

Because the wall patches do not bound a volume, the divergence theorem cannot 
be applied to integrals over their surface, and the more general expressions ( 2 . 7 ~ )  and 
(2.7 b) must be retained for interactions involving wall patches. Upon the assumption 
of constant force density over the surface of a wall patch, ( 2 . 7 ~ )  and (2 .76 )  become 

( 2 . 8 a )  

(2 .8b)  

where FJ is the total force exerted by wall patch y on the fluid (note the change in 
sign between fi and F J ) ,  A ,  is the area of the patch, Ul is the velocity of the patch 
and Sy indicates the surface of the path. We have dropped the up(x)  terms in (2 .8 )  
because, for a bounded domain, u y ( x )  = 0. Note that, because the velocity of patch 
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y is prescribed, Ur appears on the left-hand side of (2.8b) rather than uz(x) as in 
(2 .7b) .  Equation ( 2 . 8 ~ )  is valid at all points that do not lie on the surface of patch 
y ,  and is therefore applicable to sphere-patch and patch-patch interactions. Patch 
self-term interactions are described by (2 .8b) ,  which can be rewritten in a more 
convenient form as follows : 

( 2 . 8 ~ )  

In forming the interactions in fl that involve wall patches, only those terms in 
(2.8a) and ( 2 . 8 ~ )  that involve FJ need be considered, as is apparent from the form of 
(2.6). The other terms can be included, with no loss of generality, in B, considered in 
detail below. The reduction of ( 2 . 8 ~ )  and ( 2 . 8 ~ )  to the forms required for use in 
Aw entails application of Fax& laws and integration over wall patch surfaces. The 
final expressions for the mobility interactions are given in Appendix A; for details see 
Durlofsky (1986). 

2.2. EJffect of planes outside discretized region 

We now consider the effect of the far particles and plane boundaries on the motion 
of particles within the periodic cell for the case of a force-free suspension subject to 
shear through relative motion of the boundaries. Because periodic boundary 
conditions are applied, it might seem natural to simply discretize the 5, y and y, z 
boundaries to the period cell and to write (2 .7b )  at each of the cell boundary 
elements. This procedure, though in principle correct, would introduce 6B additional 
unknowns and equations into the system, where B is the number of boundary 
elements in each of the periodic cell boundaries. Rather than proceed in this manner, 
which would clearly increase computation times considerably,we have devised an 
alternative method that captures the effect of the far boundaries and the suspension 
at very little computational cost. The key to this approach is to approximate the 
effect of the far plane boundaries and suspended particles on the particles in the 
periodic cell in an integrated (i.e. average) sense. This effect is contained in the B 
vector. 

The B,, BE and B ,  vectors contain the contributions to the sphere and wall patch 
velocities from the far regions of the plane boundaries, as well as the portions of the 
wall patch interactions that do not involve FJ. To form these vectors, we need to 
approximate the average force density exerted by the fluid on the walls and 
integrate this force density times the appropriate propagator from the edge of the 
periodic cell to infinity. The force density exerted by the fluid is, however, unknown ; 
it is determined during the course of the dynamic simulation and provides the 
effective viscosity of the suspension. As we shall see, however, the effect of the walls 
outside the discretized region can still be assessed. 

In the absence of particles, the force density exerted by the fluid on the upper 
boundary is simply f? = -q( V, - K ) / H ,  where V, and V, are the x-velocities of the 
lower and upper planes, respectively. 

In systems involving finite numbers of particles, f; is the force density exerted by 
the fluid on the upper boundary far from the suspended particles. Thus, for purposes 
of simulation, the force density of the far boundaries is known for this case. In the 
presence of an infinite suspension of particles, however, the force density is now given 
by 

fi = r r f  ?> (2.9) 



46 L.  J .  Durlofsky and J. F .  Brady 

where vr is the relative viscosity of the suspension, defined as the ratio of the effective 
suspension viscosity to the pure fluid viscosity. Thus, the force density given by (2.9) 
is the appropriate quantity for use in (2.8a) and ( 2 . 8 ~ )  in assessing the effect of the 
far regions of the walls. However, the disturbance caused by an element of the wall 
of force density fi must propagate through a suspension of force- and torque-free 
particles, not through pure fluid. Therefore, q in (2.8) must be replaced by qqr, which 
results in a cancellation of qr. This indicates that the effect of the far rcgion of the 
wall is the same as it would be if disturbances of force density f 2 propagate through 
pure fluid of viscosity q. 

The mathematical consequences of this conclusion are identical to those that result 
from considering the suspension outside the periodic cell (boundaries, fluid and 
suspended particles) in an averaged sense. Though the distant portion of each 
boundary exerts a force on the fluid, when averaged over a sufficiently large area the 
net force imposed by the two distant boundaries is zero (their forces are equal and 
opposite on average). Thus, the averaged efTect of the distant portion of the 
suspension is an imposed shear flow, as would be expected. The forces exerted by the 
distant portions of the boundaries and the effective viscosity of the medium through 
which these disturbances propagate determine the magnitude of the imposed shear 
flow. The magnitude of this shear flow must, however, be consistent with the 
specification of the relative velocities of the two planes, the spacing between them, 
and the portion of the boundary that is discretized. The only shear rate that satisfies 
this consistency is the shear rate that  corresponds to a force density on the distant 
boundaries of strength f ?  propagating through pure fluid of viscosity 7,  or, 
analogously, a force density of strength yrfF propagating through a medium of 
viscosity ~ 7 ~ .  Any other specification of the effects of the distant portion of the 
suspension results in a kinematic inconsistency in (2.6) and must therefore be 
rejected. 

The B vectors we wish to evaluate are comprised of two contributions: (i) a 
kinematic contribution, resulting from the terms not involving f i  (or 4) in (2.7) and 
(2.8), from both the discretized and non-discretized portions of the wall, and (ii) a 
dynamic contribution, resulting directly from the forcing by the non-discretized 
portions of the walls. Designating the first contribution D and the second 
contribution B,, 

The D contributions are straightforward to calculate, simply entailing integrals, over 
all of both walls, of the kinematic terms of (2.8). The B, vector contains integrals of 
the interaction functions, from the boundary of the discretized region to infinity, for 
both planes. The region of integration is depicted schematically in figure 1. Rather 
than actually integrate directly from C (the edge of the discretized region) to R, and 
take the limit as R +. 00, we integrate from zero to  R and subtract from this the 
integral from zero to C, in the limit R + co ; i.e. 

B =  D+B,. (2.10) 

f m r Z i l k d 8  c = f m ~ Z i j X d 8 - f O - ~ Z r i k d S  0 a s R +  00, (2.11) 

where lijk represents any of the interaction functions. The integrals are expressed in 
this way because the integrals from zero to R can be performed analytically, and the 
integrations of the functions from zero to  C are already performed in forming Aw. 
Thus, we can express B, as 

B , =  Q-Aw*Fm,  (2.12) 
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FIGURE 1. Schematic diagram depicting the region of integration from the boundary of the 
discretized region of the plane, denoted by C, to R,  as R --f co. Rather than actually integrate from 
C to R,  we integrate from zero to R and subtract from this the integral from zero to C. 

where Q represents the vector of resultant integrations from zero to R and I;m is the 
force exerted by the wall patches in the absence of any particles (i.e.f” times the area 
of the wall patch). Combining (2.12) and (2.10) gives the final expression for B. For 
the detailed components, see Durlofsky (1986). 

In the limit C+O (the discretized portion of the boundaries shrinks to zero) B 
exactly reproduces a shear flow imposed from infinity. Under these conditions, an 
isolated force-free sphere translates with the local fluid velocity and rotates with the 
local vorticity; i.e. there is no ‘wall effect’. The wall effect arises because the actual 
force density on the boundaries, in the presence of a force-free sphere, differs from its 
value in the absence of the sphere, and this in turn affects the sphere velocity. This 
effect cannot appear in our analysis until a finite portion of the wall is discretized. 
When the discretized region becomes infinite (C+ co) there is no flow imposed on the 
system by the far region of the boundaries, and the wall effect is correctly 
reproduced. We note that the above discussion is applicable only to suspensions of 
force-free particles or finite systems of particles subject to externally imposed forces 
or torques. For infinite systems of particles subject to forces or torques and bounded 
between two infinite planes, pressure drop considerations must be taken into 
account. This is because the forces exerted by the boundaries are no longer 
necessarily equal and opposite, as is apparent from a macroscopic momentum 
balance. Specifically, the forces exerted by the boundaries plus the forces exerted by 
the particles must now balance the pressure drop through the system, and the 
average flow rate of the system (or equivalently pressure drop) must now be 
specified. Thus, because the present method is not immediately applicable to 
pressure driven flows, extensions are required for the simulation of infinite systems 
of particles subject to externally imposed forces. 

The specification of the mobility problem is now complete. The mobility matrix 
contains far-field approximations to all the particle and near-region boundary 
interactions. Upon inversion, these interactions are scattered, with many-body 
reflections performed (see Durlofsky et al. for further discussion of this point), 
resulting in a grand resistance matrix that contains many-body interactions. The 
resistance matrix does not yet contain lubrication, which would only be reproduced 
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upon inversion of Aw if all moments ofthe sphere interactions were included and the 
wall were discretized infinitely finely. Lubricat,ion can be directly introduced into the 
mobility invert, however, through use of exact sphere-sphere and sphere-wall 
solutions. We now discuss how this is accomplished. 

2.3. Adjustment for lubrication 

Upon inversion of Aw, the following equation set results : 

[p: :: q[-;].-[~~]. (2.13) 

The submatrices R,,, R,, R,, and R,, comprise the grand resistance matrix W for 
finite systems of particles; the grand resistance matrix here is designated Ww. 
Lubrication is introduced into Ww through use of exact two-sphere resistance 
functions (Arp & Mason 1977; Jeffrey & Onishi 1984; Kim & Mifflin 1985) and 
sphere-wall resistance functions (Brenner 1961 ; Maude 1961 ; Dean & O'Neill 1963 ; 
O'Neill 1964; Goldman, Cox & Brenner 1967a, b ;  Cox & Brenner 1967; O'Neill & 
Stewartson 1967 ; O'Neill 1968) ; the matrix containing this exact two-body 
information is designated R z .  Part of the two-body resistance interactions 
(specifically the far-field portion) is, however, already included in (Aw)-'. Thus, in 
order not to introduce these interactions twice, the two-body resistance interactions 
already contained in (AW)-l are subtracted from W z .  The matrix composed of these 
two-body interactions, designated (WS)- ,  is formed by inverting a two-body 
mobility matrix containing terms to the same order in 1 / r  as Aw. Thus, the 
approximation to  Ww , containing both near-field sphere-sphere and sphere-wall 
lubrication and far-field many-body effects is 

WW = (Jktw)-' + W E -  (WE)".  (2.14) 

The components of 9s and (WE)" involving interactions of spheres with the 
boundaries require special consideration. In  forming sphere-wall interactions in W z ,  
exact sphere-wall solutions are employed when the sphere centre is within three 
sphere radii of the near boundary ; for greater separations the (JktW)-l interactions 
require no adjustment. Technically, in forming interactions involving a sphere near 
a wall, it is not allowable to consider either of the two planes individually. However, 
the results of Ganatos et al. (1980a, 6 )  clearly indicate that when a sphere is within 
about three sphere radii of one plane and is more than about five sphere radii from 
the other plane, the sphere motion generally coincides with the single plane results. 
And further, most of the adjustments involve singular lubrication terms, whose 
dominant behaviour is unaffected by the presence of the far plane. Thus, use of exact 
sphere-wall results for our sphere-two wall system introduces only slight error and 
does not affect the singular behaviour a t  all. We note that in the singular region near 
the wall the elements of the resistance matrix are adjusted to recover exactly the 
results of Goldman et al. (1967 b )  for a sphere near a single plane immersed in a shear 
flow. As we shall see ($3), the one-sphere results of Ganatos et al. (1980a, b )  will 
indeed be reproduced with good accuracy. 

The near-field sphere-wall interactions introduced via W z  include the interaction 
of the sphere with the entire wall, not just with a particular wall patch. Thus, the 
interaction in must also account for the entire wall. This is accomplished by 
forming a mobility matrix, to the same order in 1/r as Aw, for the sphere and all 

RTU RTE RTV 
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lp wall patches comprising the near wall. Upon inversion, the components are 
combined to yield composite sphere-wall mobility invert interactions, consistent 
with those included in as. This assures that no portion of the sphere-wall inter- 
action is counted twice. 

2.4. Particle trujectories and suspension viscosity 
Setting E to zero, the equation set to solve for the sphere velocities is: 

RF,* U = RF,. B,+ RFE- BE - RF,* ( V- B,) + F, (2.15) 

where, with the velocities of the planes prescribed, the right-hand side is known. We 
solve (2.15) using the Cholesky method, which is applicable to symmetric, positive 
definite matrices. (RFu is required to be positive definite due to the dissipative nature 
of the system.) Given U, the sphere centre positions (x,) are determined via 

(2.16) 

which can be solved using any accurate integration scheme. Once U is determined, 
T, the forces exerted by the walls, can be computed by a matrix multiplication (no 
equation set need be solved) : 

T =  R,,.(U-B,)-R,€.B,+R,,.(V-B,). (2.17) 

Given T the relative viscosity (7,) of the suspension can be calculated: 

(2.18) 

where Tx is the x-component of T summed over all the wall patches of either wall 
((2.18) is actually written for the upper wall; for the lower wall (K-V,) replaces 
(V,- 6)) .  Note that, in computing vr through knowledge of the wall forces, the 
suspension viscosity is determined through macroscopically observable quantities, 
just as in a laboratory experiment. The y-components of T sum to give the normal 
forces exerted by the walls on the fluid. In  all the simulation results we shall present, 
the normal velocities of the boundaries are prescribed to be zero. Alternatively, 
however, the normal forces exerted by the walls could be specified and their 
dilatational velocities computed. This latter specification corresponds to experimental 
arrangemGnts for studies of granular flow where, at high enough concentrations of 
solids, the suspension cannot flow until the bounding walls dilate. 

Before turning to  actual simulation results, a few remarks regarding specific 
aspects of the numerical procedure are in order. Because significant changes in Aw 
occur only when the relative separation of particles changes by amounts comparable 
to the particle size, while a$ changes on the scale of lubrication forces, which vary 
with the separation of particle surfaces, a multiple timescale method can be used, 
with Aw formed and inverted relatively infrequently. This results in substantial 
computational savings, as the inversion of the grand mobility matrix is the most time 
consuming step in the numerical procedure. 

I n  simulations of unbounded suspensions subject to an imposed bulk shear flow, 
the following relationship holds for all values of y :  

U,"(Y/J = U3Ya)+2Exy ( Y f l - Y J >  (2.19) 
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where u," designates the flow at  infinity, E,, the (x, y)-component of the bulk rate of 
strain and y, and y p  the sphere positions in y .  This relationship must hold exactly for 
the singularities in the sphere interaction functions to balance (specifically the A and 
G functions, see Kim & Miflin 1985) ; otherwise excessive overlap may occur when 
two spheres in shear flow come into near contact. For the problem a t  hand, this 
implies that BE must be a constant independent of position and that' B,  and B,  must 
satisfy an equation of the form (2.19). Unfortunately, this is not quite the case; BE 
varies slightly with position. Therefore, to assure that excessive particle overlap 
does not occur in many-particle simulations, B,, BE, and B ,  are adjusted (linearized) 
to satisfy an equation of the form (2.19). For the simulation results presented, this 
entails a t  most a 10-150/0 modification to  any of the B components. These 
adjustments tto B become small as larger portions of the bounding planes are 
discretized at constant H .  Specifically, the nonlinearities in B (which necessitate the 
adjustments) scale as O(H/L,) for L, % H .  Particle overlap can also occur if the 
integration timcstep is not sufficiently small. This problem arises independent 
of the accuracy of the final resistance matrix ; it occurs even for only two spheres, 
where the exact interactions are known. To avoid a prohibitively small timestep 
requirement, we allow some particle overlap (typically less than surface over- 
lap), though the sphere interactions are computed as though the surfaces are 

apart, as the lubrication formulae do not allow negative surface to 
surface spacings. This procedure does not appear to compromise the accuracy of 
the method (we observed no difference in limited tests that  compared the lo-@ surface 
separation specification to a specification). 

TAet us briefly discuss the computation time requirements of the general method. 
The most computationally intensive step is the inversion of the grand mobility 
matrix, requiring 0[(  11N+ 3 q 3 ]  operations in three dimensions and 0 [ ( 6 N +  2P)3]  
operations for monolayer simulations. The two alternative methods suggested a t  the 
beginning of this section would result in fewer operations for the inversion of the 
grand mobility matrix, but these savings might be somewhat countered by more 
computationally intensive function evaluations in the formation of the mobility 
matrix. For simulations with very large numbers of particles, however, a simulation 
based on the fundamental solution for a point force between two infinite planes 
(Liron & Mochon 1976) would almost certainly be the most computationally efficient, 
as the O ( P )  fill problem becomes computationally inconsequential compared to the 
O(W) inversion. 

The specification of the simulation method is now complete. The method includes 
both dominant many-body effects, involving both particles and boundaries, and 
near-field lubrication effects. By prescribing the plane boundaries to translate 
relative to one another a shear flow is generated, resulting in particle motion. The 
suspension viscosity is determined through calculation of the boundary forces, 
precisely as in an actual experiment. 

3. Model problem results 
In  order to assess the general accuracy and capabilities of the method, we now 

present simulation results for systems of one and six spheres confined between two 
plane walls. Because the sphere interactions are computed as in Durlofsky et al. 1987, 
the excellent agreement with known solutions for finite systems of spheres obtained 
in that paper applies in the present case as well, Therefore, we shall here emphasize 
test problems in which the boundaries play an important role. In  these examples, 
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FIGURE 2. Dimensionless sphere velocities resulting from imposed forces in the z- and y-directions 
for a sphere between two stationary planes spaced 10 sphere radii apart. The upper and lower solid 
lines correspond to simulation results for U, and U,, respectively, with 98 wall patches and 
L, = L, = H ,  the dashed line to the simulation result for U, with 162 wall patches and L, = L, = 2 H ,  
the broken line to the simulation result for U, with 162 wall patches and L, = L, = H ,  and the + 
and 0 to the results of Ganatos et al. (1980a, b )  for U, and U,, respectively. Results are shown only 
for 5 < y, < 9 as the solutions are symmetric about y = 5. 

periodic boundary conditions are applied in the x-direction only, though the 
boundaries extend to infinity in both x and z. 

The first test problem considered involves a single sphere of radius a confined 
between two planes spaced 10 sphere radii apart (H = 10). From here on, all 
distances will be non-dimensionalized by a. Figure 2 depicts the sphere velocity in the 
x- and y-directions (U, and U,) resulting from applied forces of magnitude 6 q a  in, the 
x- and y-directions, respectively, as a function of ys ,  the position of the sphere centre. 
Results are shown only for 5 < ys < 9, as the solutions are symmetric about the 
centreline y = 5. In the figure, the upper solid line corresponds to the simulation 
result for U, with 98 wall patches (49 patches per wall) and L, = L, = H (i.e. a cubic 
periodic cell), the lower solid line corresponds to the simulation result for U, with the 
same boundary specifications, the dashed line corresponds to the simulation result 
for U, with 162 wall patches and L, = L, = 2H, the broken line to the simulation 
result for U, with 162 wall patches and L, = L, = H ,  and the plus signs and squares 
to the results of Ganatos et al. (1980a, b )  for U, and U,, respectively. The agreement 
between the simulation results and the results of Ganatos et al. is clearly excellent 
when the sphere is near the boundary (8 < ys < 9), with discrepancies apparent for 
5 < ys < 8. The discrepancies are clearly larger for the U, results than for the U, 
results, and in both cases accuracy is improved by increasing the number of wall 
patches. The largest discrepancy between the results of Ganatos et al. and the 98 wall 
patch simulation results are about 9% for U, and 5 %  for Uy; for the 162 wall patch 
simulations the discrepancies are reduced to 5% for U,(L,/H = 2) and 4% for 
U,(L,/H = 1). 
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Number of wall patches LJH Area of one wall patch uz r;, 
18 1 11.11 0.869 0.736 
50 1 4.00 0.861 0.719 
98 1 2.04 0.857 0.712 

162 1 1.23 0.854 0.708 
18 2 44.44 0.852 0.758 
50 2 16.00 0.836 0.739 
98 2 8.16 0.830 0.729 

162 2 4.94 0.826 0.724 
98 1.5 4.59 0.836 0.718 
98 3 18.37 0.833 0.744 
98 4 32.65 0.841 0.754 

Ganatos et al. 0.79 0.69 

TABLE 1. U’ and U, results for a single sphere (y, = 6) translating between two stationary 
planes spaced 10 sphere radii apart 

A wider range of variation in both the number of wall patches and the Lx/H( = 
LJH) ratio is displayed in table 1 for a sphere located a t  ys = 6.0. Taking the 
Ganatos et al. results as exact, it is apparent that the Ux simulation results improve 
with increased number of wall patches ( P )  at  fixed L,/H and with increased L,/H at 
fixed P for 1 < L,/H < 2.  The U, simulation results also improve with increased P 
at fixed Lx/H,  but worsen with increased Lx/H a t  fixed P .  The key to understanding 
these behaviours is consideration of the study of Liron & Mochon (1976) of the 
fundamental solution for Stokes’ flow between two parallel plane walls. Liron & 
Mochon found that velocity disturbances caused by motion normal to the boundaries 
decay exponentially with distance, while velocity components in directions parallel 
to the plane walls caused by motion parallel to the boundaries decay only as l / r 2 ,  
where r is the distance from the disturbance. Due to the relatively slow decay of 
parallel disturbances, the U, results improve as larger areas of the plane are 
discretized, even though the individual wall patches become larger. The rapid decay 
of disturbances normal to the boundaries, however, render the U, results more 
sensitive to the level of discretization (i.e. wall patch size) than to the total area of 
discretized wall ; consequently these results do not improve as larger areas of wall are 
discretized at  the expense of wall patch size. 

We note that, even with very large areas of the boundaries discretized very finely, 
the exact results for a sphere between two walls might not be recovered unless higher 
moments were included in the sphere interactions. This does not appear to be 
necessary, however, in light of the only slight discrepancies apparent at this level of 
approximation. We note further that the simulation results for U, and V, displayed 
in figure 2 extend all the way to sphere-wall contact. Because both velocities tend 
to zero as the sphere approaches the wall, there does not appear to be any dramatic 
effect in this limit. However, were we to plot the forces required to translate the 
sphere at  constant velocity, these results would be seen to diverge as In E for parallel 
motion, where E is the spacing between the sphere and wall surfaces, and as 1/e for 
normal motion. Because we introduce lubrication analytically into the resistance 
matrix, the simulation method has no difficulty reproducing this singular behaviour. 
An approach such as that of Ganatos et al., however, requires an increasing number 
of collocation points to resolve singularities in the limit E + O ,  resulting in great 
computational expense. 
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FIQURE 3. Dimensionless translational velocity of a single force- and torque-free sphere immersed 
between two planes spaced 10 sphere radii apart, with the lower plane translating at V, = -0.5 and 
the upper plane at V, = 0.5. The solid line corresponds to the simulation result with 98 wall patches 
and L, = L, = H ,  x to the results of Ganatos et al. (1982) and the dashed line to the velocity profile 
of pure fluid in the absence of the sphere. 

Figure 3 depicts the translational velocity of a single force- and torque-free sphere 
immersed between two planes spaced 10 sphere radii apart. The upper plane 
translates at  V, = 0.5 and the lower plane at  V, = -0.5. The solid line is the 
simulation result with P = 98 and L,/H = 1, the x values are the results of  Ganatos 
et al. (1982) and the dashed line is the velocity profile for pure fluid. The agreement 
is clearly very good over all values of ys. 

Although the walls are treated individually in adjusting the sphere-wall resistance 
interactions, the agreement between our results and those of Ganatos et al., evident 
in figures 2 and 3, persists even for plane-plane spacings of as few as 2.5 sphere radii. 
At  such near spacings, the individual treatment of the walls might be expected to 
introduce some error. However, at near spacings, the singularities in the sphere-plane 
interactions dominate, and these are handled accurately. 

We now turn to a model problem that more clearly displays the importance of 
correctly modelling sphere-sphere and sphere-wall lubrication in the resistance 
matrix. The initial configuration is shown in figure 4. Six spheres are oriented in a line 
at an angle of 135" to the x-axis. The dimensionless spacing between each pair of 
sphere surfaces E is and the spacing between the spheres adjacent to the planes 
and the plane is also The lower plane is stationary and the upper plane 
translates at  V, = 1; for this run P = 50 and L,/H = 1. The initial sphere velocities 
are shown in table 2 (52, is the angular velocity in the z-direction), with the sphere 
numbering corresponding to that in figure 4. Note that the translational velocities 
are antisymmetric about the midline y = and the angular velocities symmetric. 
Especially interesting are the actual values of the 2-velocities - the spheres translate 
in x almost as a plug, with all six spheres moving with the average velocity of the two 
planes (0.5) to within about 10 Yo. This plug-flow like behaviour is captured through 



54 L .  J .  Durlofsky and J .  F .  Brady 

FIGURE 4. Initial configuration for the six-sphere simulation. The spacing between adjacent sphere 
surfaces and between the surfaces of the spheres nearest the plane and the plane is sphere radii. 
The spheres are oriented along the compressional axis; the upper plane translates in the positive 
x-direction and the lower plane is stationary. 

Sphere number Uz 4 4 
1 0.5057 0.0002789 -0.07048 
2 0.5383 0.03498 0.01636 
3 0.5230 0.02188 -0.02359 
4 0.4770 - 0.02 188 - 0.02359 
5 0.4617 -0.03498 0.01636 
6 0.4943 - 0.00027 89 - 0.07048 

TABLE 2. Initial velocities for six sphere chain 

correctly modelling the lubrication interactions between spheres and between 
spheres and the boundaries. This simple example may qualitatively describe 
suspension behaviour in concentrated systems, where plug-like flow is observed 
experimentally under some conditions. 

Figure 5 depicts the time evolution of the six sphere configuration. By t x 20 (time 
is non-dimensionalized by a/V,) the spheres achieve a linear configuration that 
appears to be a mirror image of the initial configuration, though this is not the case, 
as can be demonstrated by reversibility arguments as follows. Were a configuration 
a mirror image of the initial configuration then, by reversibility, an intermediate 
arrangement appearing midway in time between the initial and mirror-image 
configurations would have to itself possess reflectional symmetry about a line x = 

constant. The only configurations that could exhibit such a symmetry correspond to 
either particles arranged vertically on the line x = constant, which is not 
geometrically possible in the present arrangement, or to two sets of three particles (or 
three sets of two) arranged symmetrically about x = constant, which entails a 
rupture and a reformation of the six particle configuration that is clearly not 
observed. Thus the t x 20 configuration is not a mirror image of the initial 
arrangement. By t = 25 the chain has rotated away from the two planes and has 
ruptured into three groups of two spheres. 

Although the six sphere configuration does not reform a mirror image of the initial 
configuration, it does indeed obey reversibility. Upon reversal of the direction of 
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FIQURE 5. Time evolution of the six-sphere configuration. (a) t = 5, ( b )  t = 10, (c) t = 15, ( d )  t = 20 
and (e) t = 25. The configuration at t = 20 is not a mirror image of the initial configuration (see 
text). 



56 L .  J .  Durlofsky and J .  F. Brady 

translation of the upper plane, the spheres retrace their original path with extremely 
good accuracy. For example, in a simulation where the direction of translation of the 
upper plane was reversed a t  t = 18, the x-positions of the spheres at t = 23 agree with 
those at t = 13 to three decimal places; the magnitudes of the velocities show 
comparable agreement. This agreement persists all the way to  t = 36, where the 
initial condition is reproduced. It must be emphasized, however, that in general, 
owing to the chaotic nature of the many particle system, complicated sphere 
configurations will not display reversibility over long times. This is apparent from 
the evolution equation (2.16), a set of 6N coupled, nonlinear ordinary differential 
equations, which can, in general, yield chaotic solutions. 

The general simulation method has now been shown to be capable of both 
accurately modelling the motion of a single sphere confined between two plane 
boundaries and of following the time evolution of a configuration Qf strongly 
interacting spheres in motions fundamentally affected by the presence of plane 
boundaries. We now proceed with simulations of many-particle suspensions. 

4. Monolayer suspension simulations 
In  this section we shall present dynamic simulation results for sheared suspensions 

of spheres confined to a monolayer, i.e. the sphere centres are all prescribed to lie in 
a single plane oriented perpendicular to the plane boundaries. Monolayer simulations 
are considerably less computationally intensive than full three-dimensional simu- 
lations (each sphere now has only six unknowns associated with it, specifically two 
unknown forces, one torque and three independent stresslet components, as opposed 
to 11 in three dimensions, and each wall patch now has two unknown force 
components, as opposed t o  three for three-dimensional simulations), while, as we 
shall see, generally retaining the essential physics of three-dimensional systems. The 
measure of particle density in monolayer systems is areal fraction rather than 
volume fraction in three dimensions, defined as 

Nza2 
# A = % .  

In  monolayer simulations, periodic boundary conditions are only imposed in the 
x-direction (direction of flow), though the boundaries extend to infinity in both x 
and z. 

The first sheared suspension simulation demonstrates viscous resuspension, a 
phenomenon observed experimentally by Gadala-Maria (1979) and Leighton & 
Acrivos (1986). These investigators found that an initially settled arrangement of 
identical non-Brownian spheres resuspended when subjected to shear, under 
conditions of particle Reynolds number as low as lop6. The pertinent parameter in 
these problems is a Shields parameter, which provides the ratio of viscous to  
gravitational forces. Experimental results indicate that the increase in the bed height 
is proportional to the Shields parameter. The theoretical analysis of Leighton & 
Acrivos, which assumes that viscous resuspension derives from a competition 
between gravitational forces and shcar-induced diffusion, arrives a t  the same 
conclusion. 

Leighton & Acrivos (1987) suggest that three-body interactions may contribute to 
shear-induced particle migrations. Along these lines, Hassonjee, Pfeffer & Ganatos 
(private communication) present calculations for three spheres in a shear flow in 
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which the spheres interact in such a way as to induce upward motion. Their 
calculations involve, however, one free and two fixed spheres, so the connection 
between their results and the viscous resuspension of force-free spheres is not entirely 
clear. Leighton & Acrivos (1987) emphasize, however, that non-hydrodynamic 
interparticle interactions, such as irreversible surface contact due to surface 
roughness, will act to destroy the reversibility of the hydrodynamic interactions, 
leading to particle drift. Though such effects are undoubtedly present in concentrated 
suspensions, we refrain from identifying any particular effect as solely responsible for 
viscous resuspension. Instead, we note the chaotic nature of (2.16), which allows for 
irreversibility, and thus particle drift, in a system of particles that interact purely 
hydrodynamically. 

Shown in figure 6 ( a )  is the initial configuration for our viscous resuspension 
simulation. The horizontal lines represent the plane boundaries and the vertical lines 
the edges of the periodic cell ; note that the configuration is periodically replicated in 
the x-direction. To obtain this configuration, the particles were first arranged 
hexagonally, with a very small (0.05) surface to surface spacing, and then perturbed 
randomly. The configuration is therefore not necessarily that which would result 
from sedimentation, but should be representative of an actual sediment layer. One 
interesting and important feature to note is that in simulations in which the spheres 
were not perturbed from the perfect hexagonal arrangement, the layers simply 
slipped relative to one another, periodically reforming the initial configuration. 
Therefore, no resuspension occurred. Once the symmetry of the initial configuration 
is broken, however, the particles resuspend. This sensitivity to the initial con- 
figuration is a hallmark of the chaotic nature of the particle evolution equations. 

In the present simulation, short-ranged repulsive forces, intended to qualitatively 
model sphere roughness, were included in the sphere-sphere interactions. These 
forces are of the form 

7ePT6 
F ap = F o p  1 - e-rs (4.2) 

where Faa is the force exerted on sphere a by sphere /3, Fo is the force magnitude, 7 

is related to its range, B is the spacing between the surfaces of spheres a! and ,!3 and 
eaP is the unit vector connecting the sphere centres. In the simulation, 7 = 1000 and 
Fo = 0.001, giving a repulsive force of magnitude unity for E x 0.0024. Simulations 
performed without any interparticle forces did display viscous resuspension, though 
the spheres tended to form large clusters which only slowly rearranged, resulting in 
slow resuspension. The introduction of short-ranged interparticle forces accelerates 
the resuspension process as it destroys tightly packed clusters. 

The sequence of figures 6(b ) -6 (e )  display the resuspension process. In this 
simulation, the upper plane translates with velocity V, = 0.5 and the lower plane 
with velocity V, = -0.5; 27 spheres are included in the simulation with H = 18.45. 
No gravitational forces are imposed on the spheres, giving a Shields parameter of 
infinity. Time ( t )  is non-dimensionalized by a / ( & -  V,). Initially, the sphere centre 
farthest from the lower plane (y = 0) is located a t  y = 4.65; by t = 500 (figure 6 ( b ) )  
the farthest sphere is located at y = 8.93, at t = 1000 (figure 6(c)), y = 11.96; at 
t = 1500 (figure 6 ( d ) ) ,  y = 13.28, and at  t = 2000 (figure 6 ( e ) ) ,  y = 14.57. Clearly the 
particles resuspend, with the bed height (defined here as the location of the sphere 
farthest from the lower plane) steadily increasing with time. Because the Shields 
parameter is infinite, the experimental findings of Leighton & Acrivos suggest that 
the particles would ultimately resuspend all the way to the upper plane. Our 
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FIGURE 6(a-c) .  For caption see facing page. 
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FIGURE 6. Simulation of the viscous resuspension of a monolayer of neutrally buoyant spheres. The 
lower plane translates a t  V, = -0.5 and the upper plane at 4 = 0.5. The initial configuration (a )  
is a randomized hexagonal arrangement, in ( b )  t = 500, ( c )  t = 1000, (d )  t = 1500 and ( e )  t = 2000. 
The bed height increases with time, though a t  a decreasing rate. 

simulation results also suggest this, though they indicate that the rate of increase of 
the bed height decreases with time, and therefore the simulation might require 
considerably more time to achieve full resuspension. 

One of the great advantages of dynamic simulation is that the suspension 
microstructure is known at every instant in time, allowing macroscale properties to 
be understood in terms of the microstructure. In  the problem a t  hand, the macroscale 
quantity of interest is the bed height. From the simulation results, we can explain the 
relationship between the increase in bed height with time and the microstructure as 
follows. Particles initially form clusters, which rotate en  rnasse with the shear flow 
and are eventually broken apart, releasing particles into regions of low particle 
concentration. These ‘free ’ particles then interact with the clustered particles, 
freeing more particles from the clusters and causing a continual decrease in the size 
of the larger clusters. This results in particle motion toward the upper plane 
(resuspension). As the clusters decrease in size the resuspension process slows, as is 

3 FLM 200 
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FIGURE 7. Variation of relative viscosity 7, with time for a monolayer simulation of 49 spheres 
at #A = 0.3. 

apparent from the sequence of figures 6(a-e). Also apparent from the figures is the 
observation that particles initially adjacent to the plane tend to remain there, i.e. few 
of them resuspend. Thus, if quantitative resuspension results are desired, enough 
layers of particles must be included in the simulation so resuspension can be observed 
without normal motion of the bottom layer of particles. 

We now turn to simulation results for a sheared suspension of areal fraction 0.3. 
In this simulation, 49 particles are included ( H  = 22.65) with no interparticle or 
externally imposed forces acting. The upper plane again translates at K2 = 0.5 and 
the lower plane a t  V, = -0.5. The initial configuration is obtained via a hard-disk 
Monte Carlo simulation ; it is therefore spatially homogeneous (except near the 
walls), unlike the initial configuration in the viscous resuspension simulation. This 
run proceeds until a dimensionless time of 500. Our objective here is to calculate both 
transient and time-average suspension quantities. 

Figure 7 depicts the variation of the relative viscosity (7,) with time for the 
#A = 0.3 simulation. In computing yr for a monolayer system, (2.18) requires slight 
modification; see Durlofsky (1986) for details. Initially (t  < - loo), the simulation 
results indicate that yr increases with time, but by t x 100 the relative suspension 
viscosity no longer shows a definite trend, though short-time fluctuations are clearly 
apparent. Such fluctuations are not uncammon to monolayer systems. Experimental 
investigations of sheared monolayer suspensions, performed by Bouillot et al. (1982) 
and Blanc et al. (1983), also report large fluctuations in relative viscosity, with the 
magnitude of the fluctuations increasing with decreasing system size. 

Figure 8 depicts the instantaneous suspension microstructure at two times : (a) 
t = 188.1, where q, = 1.84 and (b )  t = 206.1, where qr = 2.23. These two times 
correspond to relative extremes in q,, though the variation in q, is not that large 
between the two times. Most striking about the microstructures in figure 8 are the 
relatively large clusters of nearly touching spheres, some containing as many as eight 
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FIGURE 8. Instantaneous suspension microstructure for the qbA = 0.3 simulation a t  (a )  t = 188.1 
and ( b )  t = 206.1. Pu’ote the en muse rotation of the shaded cluster with the shear flow. 

or nine particles. Also of interest is the dynamics of these clusters; the en m s s e  
rotation of the shaded cluster with the shear flow is evident in figure 8, as is the 
rotation of the smaller cluster of four spheres to its left. In fact, the difference in 
relative viscosity between the two configurations may be explained qualitatively in 
terms of the orientation of the clusters. Specifically, clusters aligned along the 
extensional axis of the shear flow result in larger viscosities than identical clusters 
not so aligned. From figure 8 i t  appears that the larger clusters are more closely 
aligned with the extension at  the later time, which corresponds to the higher y,.. 

Until now we have only considered instantaneous suspension properties. We now 
turn to a discussion of some time-average results. These results represent averages 
over the period 100 < t < 500; the transient period 0 < t < 100 is not included. 
Figure 9 depicts the time average sphere centre density profile. The sphere centre 
density, ps ,  is calculated by dividing the domain into a number of slices in y (in this 
case 50) adding up the total number of sphere centres in each slice over the period 
100 < t < 500 and dividing by the number of sphere centres that would lie in the slice 
if the sphere centres were homogeneously distributed. Apparent in figure 9 are wall 

3-2 
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exclusion areas followed by large peaks in sphere density. 
FIQWRE 9. Time average sphere centre density profile for the = 0.3 simulation. Note the wall 

exclusion areas followed by large peaks in density near the two boundaries. The 
density exhibits large fluctuations in the core rather than a more or less constant 
ps of about unity, as might be expected. A uniform density might be recovered if the 
simulation were continued out to longer times. Despite the fluctuations in ps, the 
particle average x-velocity profile shown in figure 10 shows very little fluctuation. 
The solid line represents the average particle velocity and the dashed line the 
velocity profile of pure fluid in the absence of particles. The two curves clearly 
coincide, indicating that a t  = 0.3 the spheres translate on average nearly as pure 
fluid. Displayed in figure 11 is the mean-square sphere y-velocity profile, ( VZ,), 
which gives an idea of the magnitudes of the sphere y-velocities and is also closely 
related to particle dispersion. Clearly ( UZ, ) approaches zero a t  both boundaries 
and is nearly constant in the core with the exception of the large peak a t  y = 16.1. 
This value of y, however, corresponds to an extremely low p,(p, = 0.18), so the peak 
in (u",) is probably not statistically significant. 

Some of the time average simulation results can be compared to the experimental 
findings of Bouillot et al. and Blanc et al. However, it must be noted that the 
velocity fields in the absence of particles in the experiments were not linear, so all com- 
parisons are at best qualitative. For #A = 0.3, the experiments give T~ = 1.64; the 
100 i t d 500 average simulation qr is 1.97. The simulation viscosity results would be 
expected to exceed the experimental findings because, experimentally, particles 
are not constrained to lie in the monolayer while numerically they are, which 
assures that stresses are transmitted from sphere to sphere more efficiently in 
simulation than experimentally. The experimental results also indicate that the 
particle average streamwise velocity profile (( U,)) coincides with the pure fluid 
velocity profile for #A < 0.4, in agreement with our findings. 
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FIGURE 10. Time average particle %-velocity profile for the #, = 0.3 simulation. The solid line 
represents the average particle velocity and the dashed line the velocity of pure fluid in the absence 
of particles. 
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FIGURE 11. Time average mean-square sphere y-velocity profile for the #A = 0.3 simulation. 
This quantity is closely related to particle dispersion. 
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5. Conclusions 
In  this paper we have developed and demonstrated a method capable of simulating 

the dynamic behaviour of bounded suspensions. In  the formulation we have only 
considered systems of identical spheres, but extensions to include polydispersity, as 
well as non-spherical particles, are relatively straightforward. Similarly, using the 
approach of Bossis & Brady (1987), Brownian motion can also be incorporated into 
the method. 

In  all of our development we have addressed the two-plane problem, but it should 
be obvious that one-plane problems are a subset of the general method. Thus, a 
study involving, for example, spheres immersed in a shear flow near a single plane 
boundary could easily be handled with our method. For such problems, however, the 
fundamental solution for a point force near a single plane boundary might be an 
appropriate starting point ; this would eliminate the need for discretization of the 
wall. The general method could also be adapted to study suspensions immersed in a 
pressure driven flow between two walls or through a tube or to suspensions subject 
to externally imposed forces or torques. For these problems, a macroscopic 
momentum balance would be required to relate the forces (if any) exerted by the 
particles, the forces exerted by the boundaries and the imposed pressure gradient. 

The monolayer suspension simulations presented in 54 demonstrate the importance 
of particle clustering in the evolution of the suspension microstructure. In  a 
subsequent paper we shall present a more comprehensive study of sheared suspension 
behaviour (some results are presented in Durlofsky 1986) where it will be seen that 
particle clustering has a profound qualitative effect on macroscale quantities such as 
relative viscosity in moderately concentrated systems ($A > - 0.35). Indeed, we 
shall show that the high $A macroscale behaviour of bounded monolayer suspensions 
subject to shear is dominated on the microscale by the formation, rearrangement and 
breakup of particle clusters that  &an from one boundary to  the other. This 
percolation-like behaviour indicates that above some critical $A (or critical $ in three 
dimensions) the behaviour of the suspension is fundamentally system-size dependent, 
and therefore boundary dominated. Specifically, in bounded monolayer suspensions 
subject to shear, for $A > ,., 0.35, large fluctuations in the viscosity time trace will 
be evident. It will be shown that it is the formation of particle clusters that span from 
one boundary to the other, which effectively transmit large stresses, that results in 
the peaks in viscosity, and the rearrangement and breakup of these spanning clusters 
that produce the large viscosity fluctuations. At higher concentrations ($A = 0.6), 
very large, compact clusters form, resulting in extremely high suspension viscosities 
as well as plug-flow-like behaviour, where all particles translate with nearly the 
average velocity of the two planes. These and other interesting behaviours will serve 
to demonstrate the qualitative importance of boundaries in concentrated suspensions 
subject to shear. 

We wish to thank A. Heil and J. Shiang for their help with some of the simulations. 
Computer time was provided on the San Diego Supercomputer Center Cray X-MP 
through a National Science Foundation allocation. Partial support for this work was 
through CBT-8696067. 
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Appendix A. Elements of the grand mobility matrix 
The grand mobility matrix dw is formed in a pairwise manner and includes 

sphere-sphere, spherewall patch and wall patch-wall patch interactions. The 
sphere-sphere interaction components (submatrices M,, M,, ME, and M E ,  in 
(2.6)) are given in Durlofsky et al. ; here we shall consider the others. 

The submatrices Mu, and MET (and therefore M, and M, by symmetry) derive 
from pairwise sphere-wall patch interaction matrices. The one sphere-one wall patch 
mobility matrix is represented as follows : 

where the subscript a: refers to the sphere and y to the wall patch, Fa represents the 
force and La the torque exerted by the sphere on the fluid, U, is the sphere 
translational velocity and a, the rot,ational velocity, and all other symbols are as 
defined in $2.1. The notation in (A 1) is analogous to that of Jeffrey & Onishi (1984) 
and Kim & Mifflin (1985), and the symmetry properties discussed in those references 
apply here as well. The sphere self-term interactions (i.e. those components of (A 1) 
with aa subscripts) are given in Durlofsky et al. and will not be repeated here. The 
wall-patch self-term uyy will be discussed below in the context of wall patch-wall 
patch interactions. 

Applying Faxen laws to ( 2 . 8 ~ )  enables us to form uay, bay and gar directly (and 
therefore uya, gYa and &,). Non-dimensionalizing all lengths by the sphere radii a ,  u 
matrices by 6n7a, b by 6n7a2 and g by 6n7a3 we have the following: 

a;J=--J 3 1  { 1 1 1  
- (aii +e i  e,) +-- (8,5-3eie,)} dS, 

4 4  s, r 3 r3 

where e, = r i / r  and all other symbols are as defined in $2.1. 

pairwise patch-patch mobility matrices ; i.e., 
Proceeding analogously for the wall patch-wall patch interactions (MYT) ,  we form 

where y and S refer to two distinct wall patches. Assuming that the wall patches are 
square of half-side L,, we have, for the patch self-term, 

which can be evaluated to give 

ag = ag = 1.9831/L,, aE = 1.3221/LP, 
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with all other components zero. For the patch-patch terms, 

L. J .  Durlofsky and J .  F. Brady 

where the first integral is evaluated from thc centre of wall patch y over all of patch 
S, the second integral is from the centre of wall patch S over all of wall patch y and 
the last term is evaluated from the centre of patch y to the centre of patch 6. 

All of the components of AW have now been specified. The interactions involving 
integrals over wall patch surfaces are evaluated numerically during the course of a 
simulation using a nine-point Gaussian quadrature. 
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